SOME RESULTS ON BOX DIMENSION ESTIMATION OF FRACTAL CONTINUOUS FUNCTIONS

Author:

YANG HUAI1ORCID,REN LULU1ORCID,ZHENG QIAN1ORCID

Affiliation:

1. Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, P. R. China

Abstract

In this paper, we explore upper box dimension of continuous functions on [Formula: see text] and their Riemann–Liouville fractional integral. Firstly, by comparing function limits, we prove that the upper box dimension of the Riemann–Liouville fractional order integral image of a continuous function will not exceed [Formula: see text], the result similar to [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous functions, Acta Math. Appl. Sin. E 32 (2016) 1494–1508]. Secondly, we prove that upper box dimension of multiple algebraic sums of continuous functions does not exceed the largest box dimension among them, backing up our conclusion with an appropriate example. Finally, we draw the same conclusions for the product of multiple continuous functions.

Funder

National Natural Science Foundation of China

Knowledge Innovation Program of Wuhan-Basic Research

Hubei Provincial Key Laboratory of Green Materials for Light Industry

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3