Fast and Parallel Summed Area Table for Fabric Defect Detection

Author:

Ragab Khaled1ORCID

Affiliation:

1. College of Computer Sciences and Information Technology, King Faisal University, Hofuf, Saudi Arabia

Abstract

Automating fabric defect detection has a significant role in fabric industries. However, the existing fabric defect detection algorithms lack the real-time performance that is required in real applications due to their high demanding computation. To ensure real time, high accuracy and reliable fabric defect detection this paper developed a fast and parallel normalized cross-correlation algorithm based on summed-area table technique called PFDD-SAT. To meet real-time requirements, extensive use of the NVIDIA CUDA framework for Graphical Processing Unit (GPU) computing is made. The detailed implementation steps of the PFDD-SAT are illustrated in this paper. Several experiments have been carried out to evaluate the detection time and accuracy and then the robustness to illumination and Gaussian noises. The results show that the PFDD-SAT has robustness to noise and speeds the defect detection process more than 200 times than normal required time and that greatly met the needs for real-time automatic fabric defect detection.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3