DSTEELNet: A Real-Time Parallel Dilated CNN with Atrous Spatial Pyramid Pooling for Detecting and Classifying Defects in Surface Steel Strips

Author:

Ahmed Khaled R.ORCID

Abstract

Automatic defects inspection and classification demonstrate significant importance in improving quality in the steel industry. This paper proposed and developed DSTEELNet convolution neural network (CNN) architecture to improve detection accuracy and the required time to detect defects in surface steel strips. DSTEELNet includes three parallel stacks of convolution blocks with atrous spatial pyramid pooling. Each convolution block used a different dilation rate that expands the receptive fields, increases the feature resolutions and covers square regions of input 2D image without any holes or missing edges and without increases in computations. This work illustrates the performance of DSTEELNet with a different number of parallel stacks and a different order of dilation rates. The experimental results indicate significant improvements in accuracy and illustrate that the DSTEELNet achieves of 97% mAP in detecting defects in surface steel strips on the augmented dataset GNEU and Severstal datasets and is able to detect defects in a single image in 23ms.

Funder

Vice Provost for Research at Southern Illinois University Carbondale

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3