SYNTHESIS OF FUNCTION-DESCRIBED GRAPHS AND CLUSTERING OF ATTRIBUTED GRAPHS

Author:

SERRATOSA FRANCESC1,ALQUÉZAR RENÉ2,SANFELIU ALBERTO3

Affiliation:

1. Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Campus Sescelades, Avinguda dels Paisos Catalans 26, 43007 Tarragona, Catalonia, Spain

2. Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona Salgado 1-3, Mòdul C6, 08034 Barcelona, Spain

3. Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya – CSIC, Barcelona, Spain

Abstract

Function-Described Graphs (FDGs) have been introduced by the authors as a representation of an ensemble of Attributed Graphs (AGs) for structural pattern recognition alternative to first-order random graphs. Both optimal and approximate algorithms for error-tolerant graph matching, which use a distance measure between AGs and FDGs, have been reported elsewhere. In this paper, both the supervised and the unsupervised synthesis of FDGs from a set of graphs is addressed. First, two procedures are described to synthesize an FDG from a set of commonly labeled AGs or FDGs, respectively. Then, the unsupervised synthesis of FDGs is studied in he context of clustering a set of AGs and obtaining an FDG model for each cluster. Two algorithms based on incremental and hierarchical clustering, respectively, are proposed, which are parameterized by a graph matching method. Some experimental results both on synthetic data and a real 3D-object recognition application show that the proposed algorithms are effective for clustering a set of AGs and synthesizing the FDGs that describe the classes. Moreover, the synthesized FDGs are shown to be useful for pattern recognition thanks to the distance measure and matching algorithm previously reported.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Redefining the Graph Edit Distance;SN Computer Science;2021-08-31

2. Graph edit distance: Restrictions to be a metric;Pattern Recognition;2019-06

3. Image representation and matching with geometric-edge random structure graph;Pattern Recognition Letters;2017-02

4. A novel graph clustering algorithm based on discrete-time quantum random walk;Quantum Inspired Computational Intelligence;2017

5. Learning Graph Matching Substitution Weights Based on the Ground Truth Node Correspondence;International Journal of Pattern Recognition and Artificial Intelligence;2016-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3