Recent Advances in Graph Matching

Author:

Bunke H.1,Messmer B. T.1

Affiliation:

1. Institut für Informatik und Angewandte Mathematik, Universität Bern, Neubrückstr. 10, CH-3012 Bern, Switzerland

Abstract

A powerful and universal data structure with applications invarious subfields of science and engineering is graphs. In computer vision and image analysis, graphs are often used for the representation of structured objects. For example, if the problem is to recognize instances of known objects in an image, then often models, or prototypes, of the known objects are represented by means of graphs and stored in a database. The unknown objects in the input image are extracted by means of suitable preprocessing and segmentation algorithms, and represented by graphs that are analogous to the model graphs. Thus, the problem of object recognition is transformed into a graph matching problem. In this paper, it is assumed that there is an input graph that is given on-line, and a number of model, or prototype, graphs that are known a priori. We present a new approach to subgraph isomorphism detection which is based on a compact representation of the model graphs that is computed off-line. Subgraphs that appear multiple times within the same or within different model graphs are represented only once, thus reducing the computational effort to detect them in an input graph. In the extreme case where all model graphs are highly similar, the run time of the new algorithm becomes independent of the number of model graphs. We also describe an extension of this method to error-correcting graph matching. Furthermore, an approach to subgraph isomorphism detection based on decision trees is proposed. A decision tree is generated from the models in an off-line phase. This decision tree can be used for subgraph isomorphism detection. The time needed for decision tree traversal is only polynomial in terms of the number of nodes of the input graph. Moreover, the time complexity of the decision tree traversal is completely independent on the number of model graphs, regardless of their similarity. However, the size of the decision tree is exponential in the number of nodes of the models. To cut down the space complexity of the decision tree, some pruning strategies are discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating remote sensing classification techniques for land use mapping in semi-arid regions: a case study of the Tamlouka basin, Algeria;Environmental Monitoring and Assessment;2024-06-08

2. A Graph Matching Approach by Aggregated Search;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. A polynomial‐time algorithm for simple undirected graph isomorphism;Concurrency and Computation: Practice and Experience;2019-08-16

4. A comparative study of graphic symbol recognition methods;Multimedia Tools and Applications;2018-06-27

5. Structural Approaches;Document Image Analysis;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3