NUMERICAL ANALYSIS AND COMPARISON OF SPECTRAL DECOMPOSITION METHODS IN BIOMETRIC APPLICATIONS

Author:

FERNÁNDEZ-MARTÍNEZ JUAN LUIS1,CERNEA ANA1

Affiliation:

1. Mathematics Department, Oviedo University, C/ Calvo Sotelo s/n 33007 Oviedo, Spain

Abstract

Face recognition is a challenging problem in computer vision and artificial intelligence. One of the main challenges consists in establishing a low-dimensional feature representation of the images having enough discriminatory power to perform high accuracy classification. Different methods of supervised and unsupervised classification can be found in the literature, but few numerical comparisons among them have been performed on the same computing platform. In this paper, we perform this kind of comparison, revisiting the main spectral decomposition methods for face recognition. We also introduce for the first time, the use of the noncentered PCA and the 2D discrete Chebyshev transform for biometric applications. Faces are represented by their spectral features, that is, their projections onto the different spectral basis. Classification is performed using different norms and/or the cosine defined by the Euclidean scalar product in the space of spectral attributes. Although this constitutes a simple algorithm of unsupervised classification, several important conclusions arise from this analysis: (1) All the spectral methods provide approximately the same accuracy when they are used with the same energy cutoff. This is an important conclusion since many publications try to promote one specific spectral method with respect to other methods. Nevertheless, there exist small variations on the highest median accuracy rates: PCA, 2DPCA and DWT perform better in this case. Also all the covariance-free spectral decomposition techniques based on single images (DCT, DST, DCHT, DWT, DWHT, DHT) are very interesting since they provide high accuracies and are not computationally expensive compared to covariance-based techniques. (2) The use of local spectral features generally provide higher accuracies than global features for the spectral methods which use the whole training database (PCA, NPCA, 2DPCA, Fisher's LDA, ICA). For the methods based on orthogonal transformations of single images, global features calculated using the whole size of the images appear to perform better. (3) The distance criterion generally provides a higher accuracy than the cosine criterion. The use of other p-norms (p > 2) provides similar results to the Euclidean norm, nevertheless some methods perform better. (4) No spectral method can provide 100% accuracy by itself. Therefore, other kind of attributes and supervised learning algorithms are needed. These results are coherent for the ORL and FERET databases. Finally, although this comparison has been performed for the face recognition problem, it could be generalized to other biometric authentication problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translation analysis of English address image recognition based on image recognition;EURASIP Journal on Image and Video Processing;2019-01-11

2. Ensemble of texture descriptors and classifiers for face recognition;Applied Computing and Informatics;2017-01

3. Exploring the Uncertainty Space of Ensemble Classifiers in Face Recognition;International Journal of Pattern Recognition and Artificial Intelligence;2015-04-27

4. UNSUPERVISED ENSEMBLE CLASSIFICATION FOR BIOMETRIC APPLICATIONS;International Journal of Pattern Recognition and Artificial Intelligence;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3