Exploring the Uncertainty Space of Ensemble Classifiers in Face Recognition

Author:

Fernández-Martínez Juan Luis1,Cernea Ana1

Affiliation:

1. Mathematics Department, Oviedo University, C/Calvo Sotelo s/n, 33007 Oviedo, Spain

Abstract

In this paper, we present a supervised ensemble learning algorithm, called SCAV1, and its application to face recognition. This algorithm exploits the uncertainty space of the ensemble classifiers. Its design includes six different nearest-neighbor (NN) classifiers that are based on different and diverse image attributes: histogram, variogram, texture analysis, edges, bidimensional discrete wavelet transform and Zernike moments. In this approach each attribute, together with its corresponding type of the analysis (local or global), and the distance criterion (p-norm) induces a different individual NN classifier. The ensemble classifier SCAV1 depends on a set of parameters: the number of candidate images used by each individual method to perform the final classification and the individual weights given to each individual classifier. SCAV1 parameters are optimized/sampled using a supervised approach via the regressive particle swarm optimization algorithm (RR-PSO). The final classifier exploits the uncertainty space of SCAV1 and uses majority voting (Borda Count) as a final decision rule. We show the application of this algorithm to the ORL and PUT image databases, obtaining very high and stable accuracies (100% median accuracy and almost null interquartile range). In conclusion, exploring the uncertainty space of ensemble classifiers provides optimum results and seems to be the appropriate strategy to adopt for face recognition and other classification problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3