GENETIC OPTIMIZATION OF RADIAL BASIS PROBABILISTIC NEURAL NETWORKS

Author:

ZHAO WEN-BO1,HUANG DE-SHUANG2,DU JI-YAN1,WANG LI-MING1

Affiliation:

1. Artillery Academy of People Liberation Army, Hefei, 230022, Anhui, P. R. China

2. Institute of Intelligent Machines, Chinese Academy of Sciences, P. R. China

Abstract

This paper discusses using genetic algorithms (GA) to optimize the structure of radial basis probabilistic neural networks (RBPNN), including how to select hidden centers of the first hidden layer and to determine the controlling parameter of Gaussian kernel functions. In the process of constructing the genetic algorithm, a novel encoding method is proposed for optimizing the RBPNN structure. This encoding method can not only make the selected hidden centers sufficiently reflect the key distribution characteristic in the space of training samples set and reduce the hidden centers number as few as possible, but also simultaneously determine the optimum controlling parameters of Gaussian kernel functions matching the selected hidden centers. Additionally, we also constructively propose a new fitness function so as to make the designed RBPNN as simple as possible in the network structure in the case of not losing the network performance. Finally, we take the two benchmark problems of discriminating two-spiral problem and classifying the iris data, for example, to test and evaluate this designed GA. The experimental results illustrate that our designed GA can significantly reduce the required hidden centers number, compared with the recursive orthogonal least square algorithm (ROLSA) and the modified K-means algorithm (MKA). In particular, by means of statistical experiments it was proved that the optimized RBPNN by our designed GA, have still a better generalization performance with respect to the ones by the ROLSA and the MKA, in spite of the network scale having been greatly reduced. Additionally, our experimental results also demonstrate that our designed GA is also suitable for optimizing the radial basis function neural networks (RBFNN).

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference31 articles.

1. Genetic algorithm for the design of a class of fuzzy controllers: an alternative approach

2. R. K. Belew, J. Mclnerney and N. N. Schraudolph, Artificial Life II, SFI Studies in the Sciences of Complexity X, eds. C. G. Langton (Addison-Wesley, Redwood City, CA, 1991) pp. 511–547.

3. Applications of genetic algorithms

4. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3