Affiliation:
1. National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, P. R. China
2. University of Queensland, Brisbane 4072, Australia
Abstract
This paper presents a framework for solving math problems stated in a natural language (NL) and applies the framework to develop algorithms for solving explicit arithmetic word problems and proving plane geometry theorems. We focus on problem understanding, that is, the transformation of a NL description of a math problem to a formal representation. We view this as a relation extraction problem, and adopt a greedy algorithm to extract the mathematical relations using a syntax-semantics model, which is a set of patterns describing how a syntactic pattern is mapped to its formal semantics. Our method yields a human readable solution that shows how the mathematical relations are extracted one at a time. We apply our framework to solve arithmetic word problems and prove plane geometry theorems. For arithmetic word problems, the extracted relations are transformed into a system of equations, and the equations are then solved to produce the solution. For plane geometry theorems, these extracted relations are input to an inference system to generate the proof. We evaluate our approach on a set of arithmetic word problems stated in Chinese, and two sets of plane geometry theorems stated in Chinese and English. Our algorithms achieve high accuracies on these datasets and they also show some desirable properties such as brevity of algorithm description and legibility of algorithm actions.
Funder
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献