A Bearing Fault Diagnosis Method Based on VMD-SVD and Fuzzy Clustering

Author:

Cheng Hongchuan1ORCID,Zhang Yimin2,Lu Wenjia1,Yang Zhou1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China

2. Equipment Reliability Institute, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China

Abstract

To obtain the fault features of the bearing, a method based on variational mode decomposition (VMD), singular value decomposition (SVD) is proposed for fault diagnosis by Gath–Geva (G–G) fuzzy clustering. Firstly, the original signals are decomposed into mode components by VMD accurately and adaptively, and the spatial condition matrix (SCM) can be obtained. The SCM utilized as the reconstruction matrix of SVD can inherit the time delay parameter and embedded dimension automatically, and then the first three singular values from the SCM are used as fault eigenvalues to decrease the feature dimension and improve the computational efficiency. G–G clustering, one of the unsupervised machine learning fuzzy clustering techniques, is employed to obtain the clustering centers and membership matrices under various bearing faults. Finally, Hamming approach degree between the test samples and the known cluster centers is calculated to realize the bearing fault identification. By comparing with EEMD and EMD based on a recursive decomposition algorithm, VMD adopts a novel completely nonrecursive method to avoid mode mixing and end effects. Furthermore, the IMF components calculated from VMD include large amounts of fault information. G–G clustering is not limited by the shapes, sizes and densities in comparison with other clustering methods. VMD and G–G clustering are more suitable for fault diagnosis of the bearing system, and the results of experiment and engineering analysis show that the proposed method can diagnose bearing faults accurately and effectively.

Funder

Chinese National Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3