Rolling Bearing Fault Diagnosis Based on SVD-GST Combined with Vision Transformer

Author:

Xie Fengyun123,Wang Gan1,Zhu Haiyan123,Sun Enguang1,Fan Qiuyang1,Wang Yang1

Affiliation:

1. School of Mechanical Electrical and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

3. Life-Cycle Technology Innovation Center of Intelligent Transportation Equipment, Nanchang 330013, China

Abstract

Aiming at rolling bearing fault diagnosis, the collected vibration signal contains complex noise interference, and one-dimensional information cannot be used to fully mine the data features of the problem. This paper proposes a rolling bearing fault diagnosis method based on SVD-GST combined with the Vision Transformer. Firstly, the one-dimensional vibration signal is preprocessed to reduce noise using singular value decomposition (SVD) to obtain a more accurate and useful signal. Then, the generalized S-transform (GST) is used to convert the processed one-dimensional vibration signal into a two-dimensional time–frequency image and make full use of the advantages of deep learning in image classification with higher recognition accuracy. In order to avoid the problem of limited sensory fields in CNN and the need for an RNN to compute step by step over time when processing sequence data, the use of a Vision Transformer model for pattern recognition classification is proposed. Finally, an experimental platform for the fault diagnosis of rolling bearings is built. The model is experimentally validated, achieving an average accuracy of 98.52% over multiple tests. Additionally, compared with the SVD-GST-2DCNN, STFT-CNN-LSTM, SVD-GST-LSTM, and GST-ViT fault diagnosis models, the proposed method has higher diagnostic accuracy and stability, providing a new method for rolling bearing fault diagnosis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Carrier and Equipment Key Laboratory Project of the Ministry of Education

Project of Jiangxi Provincial Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3