Robust Localization of Texts in Real-World Images

Author:

Ghanei Shaho1,Faez Karim1

Affiliation:

1. Electrical Engineering Department, Amirkabir University of Technology, Tehran 15914, Iran

Abstract

Localization of texts in natural images could be an important stage in many applications such as content-based image retrieval, visual impairment assistance systems, automatic robot navigation in urban environments and tourist assistance systems. However due to the variations of font, script, scale, orientations, color, shadow and lighting conditions, robust scene text localization is still a challenging task. In this paper, we propose a novel method to localize not only Farsi/Arabic and Latin texts with different sizes, fonts and orientations but also low luminance contrast and poor quality ones in the natural images taken with uneven illumination conditions. Firstly, fast weighted median filtering as a nonlinear edge-preserving smoothing filter and then color contrast preserving decolorization are exploited to make the text localization system more robust for low luminance contrast and poor quality texts. In order to extract the Farsi/Arabic and Latin scene texts and also filter the nontext ones, a unified framework is proposed incorporating the maximally stable extremal regions and a novel proposed region detector called Stable Width Stroke Regions which is based on closed boundary regions. Phase congruency and Laplacian operators are exploited to extract the closed boundary regions. Finally, to extract the single text lines, the Meanshift clustering and radon transform were used. Experimental results show that the proposed method localize low luminance contrast and low quality scene texts for both Farsi/Arabic and Latin scripts encouragingly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Farsi Text in Scene: A new dataset;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

2. Contextual information based segmentation and recognition of upper modifiers from Devanagari script;International Journal of Information Technology;2023-09-30

3. Reading Both Single and Multiple Digital Video Clocks Using Context-Aware Pixel Periodicity and Deep Learning;International Journal of Digital Crime and Forensics;2020-04

4. Natural scene text localization using edge color signature;INT J NONLINEAR ANAL;2019

5. Unsupervised Learning from Multi-Dimensional Data: A Fast Clustering Algorithm Utilizing Canopies and Statistical Information;International Journal of Information Technology & Decision Making;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3