Reading Both Single and Multiple Digital Video Clocks Using Context-Aware Pixel Periodicity and Deep Learning

Author:

Yu Xinguo1,Song Wu1,Lyu Xiaopan1,He Bin1ORCID,Ye Nan2

Affiliation:

1. Central China Normal University, Wuhan, China

2. University of Queensland, Brisbane, Australia

Abstract

This article presents an algorithm for reading both single and multiple digital video clocks by using a context-aware pixel periodicity method and a deep learning technique. Reading digital video clocks in real time is a very challenging problem. The first challenge is the clock digit localization. The existing pixel periodicity is not applicable to localizing multiple second-digit places. This article proposes a context-aware pixel periodicity method to identify the second-pixels of each clock. The second challenge is clock-digit recognition. For this task, the algorithms based a domain knowledge and deep learning technique is proposed to recognize clock digits. The proposed algorithm is better than the existing best one in two aspects. The first one is that it can read not only single digit video clock but also multiple digit video clocks. The other is that it requires a short length of a video clip. The experimental results show that the proposed algorithm can achieve 100% of accuracy in both localization and recognition for both single and multiple clocks.

Publisher

IGI Global

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3