A Nonmodel Dual-Tree Wavelet Thresholding for Image Denoising Through Noise Variance Optimization Based on Improved Chaotic Drosophila Algorithm

Author:

Zhang Lin1,Zhou Xiaomou12,Wang Zhongbin1,Tan Chao1,Liu Xinhua13

Affiliation:

1. School of Mechatronic Engineering, China University of Mining & Technology, Xuzhou 221116, P. R. China

2. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou, P. R. China

3. State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150080, P. R. China

Abstract

To remove image noise without considering the noise model, a dual-tree wavelet thresholding method (CDOA-DTDWT) is proposed through noise variance optimization. Instead of building a noise model, the proposed approach using the improved chaotic drosophila optimization algorithm (CDOA), to estimate the noise variance, and the estimated noise variance is utilized to modify wavelet coefficients in shrinkage function. To verify the optimization ability of the improved CDOA, the comparisons with basic DOA, GA, PSO and VCS are performed as well. The proposed method is tested to remove addictive noise and multiplicative noise, and denoising results are compared with other representative methods, e.g. Wiener filter, median filter, discrete wavelet transform-based thresholding (DWT), and nonoptimized dual-tree wavelet transform-based thresholding (DTDWT). Moreover, CDOA-DTDWT is applied as pre-processing utilization for tracking roller of mining machine as well. The experiment and application results prove the effectiveness and superiority of the proposed method.

Funder

National Key Basic Research Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3