Research on Mongolian-Chinese machine translation based on the end-to-end neural network

Author:

Qing-Dao-Er-Ji Ren1,Su Yila1,Wu Nier1

Affiliation:

1. School of Information Engineering, Inner Mongolia University of Technology, 49 Aimin Street Xincheng District, Hohhot 010051, P. R. China

Abstract

With the development of natural language processing and neural machine translation, the neural machine translation method of end-to-end (E2E) neural network model has gradually become the focus of research because of its high translation accuracy and strong semantics of translation. However, there are still problems such as limited vocabulary and low translation loyalty, etc. In this paper, the discriminant method and the Conditional Random Field (CRF) model were used to segment and label the stem and affixes of Mongolian in the preprocessing stage of Mongolian-Chinese bilingual corpus. Aiming at the low translation loyalty problem, a decoding model combining Convolution Neural Network (CNN) and Gated Recurrent Unit (GRU) was constructed. The target language decoding was performed by using the GRU. A global attention model was used to obtain the bilingual word alignment information in the process of bilingual word alignment processing. Finally, the quality of the translation was evaluated by Bilingual Evaluation Understudy (BLEU) values and Perplexity (PPL) values. The improved model yields a BLEU value of 25.13 and a PPL value of [Formula: see text]. The experimental results show that the E2E Mongolian-Chinese neural machine translation model was improved in terms of translation quality and semantic confusion compared with traditional statistical methods and machine translation models based on Recurrent Neural Networks (RNN).

Funder

The Natural Science Foundation of Inner Mongolia

The Foundation of Autonomous regional civil committee of Inner Mongolia

The Inner Mongolia Science and Technology Plan Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3