Photovoltaic lithium-ion battery fabricated by molecular precursor method

Author:

Nagai Hiroki1,Suzuki Tatsuya2,Takahashi Yoshihisa2,Sato Mitsunobu1

Affiliation:

1. Department of Applied Physics, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, Japan

2. Applied Chemistry and Chemical Engineering Program, Graduate School, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, Japan

Abstract

A novel thin-film lithium-ion battery (LIB) which can be charged by the light irradiation was fabricated by molecular precursor method. The unprecedented, translucent thin-film LIB, fabricated on a fluorine-doped tin oxide pre-coated glass substrate, was attained by using the active materials, titania for anode and LiCoO2 for cathode, respectively. The averaged potential at 2.04[Formula: see text]V was observed by applying a constant current of 0.2[Formula: see text]mA. Then, that at 1.82[Formula: see text]V was detected after 60[Formula: see text]s during the sequential self-discharge process. The charging voltage of the assembled battery was 1.38[Formula: see text]V with irradiation of 1-sun, the self-discharge voltage was 1.37[Formula: see text]V. Based on the calibration curve of the charging voltages over constant currents ranging from 0–1.0[Formula: see text]mA, the detected value can be theoretically reduced to the charging operation by applying a constant current of approximately 60[Formula: see text][Formula: see text]A. The charge and discharge of this device was stable voltage at least 30 cycles. The two-in-one device can simultaneously generate and store electricity from solar light, the renewable energy source, and may be applied in smart windows for distributed power system according to on-site demand.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3