SYNCHRONOUS ELECTROCHROMISM OF LITHIUM ION BATTERY WITH CHEMICALLY FABRICATED TRANSPARENT THIN FILMS

Author:

NAGAI HIROKI1,HARA HIROKI1,ENOMOTO MITSUHIRO1,MOCHIZUKI CHIHIRO1,HONDA TOHRU1,TAKANO ICHIRO1,SATO MITSUNOBU1

Affiliation:

1. Research Institute of Science and Technology, Kogakuin University, Tokyo 1920015, Japan

Abstract

Electrochromism synchronous to the charge/discharge of a novel Li ion battery having Li3Fe2(PO4)3 and Li4Ti5O12 thin-film electrodes fabricated by a chemical process, the molecular precursor method, was discovered. A cathode of transparent Li3Fe2(PO4)3 thin film with a thickness of 80 nm was fabricated by heat treating a precursor ethanol solution including a Li(I) complex of nitrilotriacetic acid, an Fe(III) complex of ethylenediaminetetraacetic acid, and (dibutylammonium)2H2P2O7 ⋅ 0.5H2O at 550°C for 10 min in air. An anode of transparent Li4Ti5O12 thin film with a thickness of 90 nm was fabricated by heat treating a precursor ethanol solution including a Li(I) complex of nitrilotriacetic acid, a Ti(IV) complex of the identical organic ligand, and hydrogen peroxide at 550°C for 30 min in air. The precursor films for both electrodes were fabricated with a spin-coating method. The thermal reactions of the novel precursors were examined in detail by means of thermogravimetry and differential thermal analysis in order to examine the components and heat-treatment temperature. The crystal structure and surface morphology of the thin-film electrodes fabricated on glass substrates pre-coated with a fluorine-doped tin oxide film were examined with X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The rechargeable function of the assembled sandwich-type battery using an electrolytic solution containing LiPF6 was measured by the repeated charge and discharge test at a constant current of 10 μA; a maximum voltage of 3.6 V was recorded. The color changes of the transparent thin-film battery between colorless before charging and a blue-gray color after charging occurred synchronously and repeatedly with the charge/discharge cycles. The intercalation of Li+ ions into the Li4Ti5O12 thin-film anode may be related to the drastic color change and the unprecedented visualization of the electrochemical reaction of a novel Li ion battery.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3