SYNTHESIS OF MAGNETITE NANOPARTICLES BY THERMAL DECOMPOSITION: TIME, TEMPERATURE, SURFACTANT AND SOLVENT EFFECTS

Author:

MAITY DIPAK1,DING JUN1,XUE JUN-MIN1

Affiliation:

1. Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore

Abstract

Monodispersed magnetite ( Fe 3 O 4) nanoparticles can be synthesized by thermal decomposition of iron(III) acetylacetonate, Fe ( acac )3. High saturation magnetization M S of the magnetite particles is extremely important to realize the full potential of magnetite materials in biomedical application. In this work, we have studied the different effects (time, temperature and surfactant) on structure and magnetic properties of Fe 3 O 4 nanoparticles. The M S of the particles are enhanced after the synthesis at a higher reaction temperature and/or a longer reaction time. However, the increase in reaction temperature and/or reaction time resulted in particle size increase and the broadening of the particle size distribution. In this work, high M S value of the magnetite particles has been achieved through adopting surfactant or modification of solvent to overcome the temperature and time effects, while the smaller size particles with an acceptable size distribution has been maintained. Size and morphology of the particles were studied by TEM while magnetic properties of the particles were measured using VSM. The saturation magnetization M S of the particles can be increased at higher reaction temperature and/or longer reaction time, while narrow size distribution of the particles can be maintained either by the selective adsorption of oleic acid to the particle surface or by synthesizing them using solvent free thermal decomposition reaction.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3