Response Surface Methodology: A Versatile Tool for the Optimization of Particle Sizes of Cellulose Beads

Author:

Wei Wei Tay Kimberly,Fun Chin Suk,Wasli Mohd Effendi,Musa Zaki

Abstract

Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed (250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration (0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the central composite design approach with Minitab-19. Cellulose concentrations were shown to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm as the smallest and 200 nm as the biggest particle size under the optimum conditions. This study envisages that RSM and experiments for targeted applications such as biomedicine and agriculture could optimize the particle sizes of cellulose beads.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3