Affiliation:
1. Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2000 Neuchâtel, Switzerland
Abstract
In this paper we study the growth rate of a version of Legendrian contact homology, which we call strip Legendrian contact homology, in 3-dimensional contact manifolds and its relation to the topological entropy of Reeb flows. We show that: if for a pair of Legendrian knots in a contact 3-manifold [Formula: see text] the strip Legendrian contact homology is defined and has exponential homotopical growth with respect to the action, then every Reeb flow on [Formula: see text] has positive topological entropy. This has the following dynamical consequence: for all Reeb flows (even degenerate ones) on [Formula: see text] the number of hyperbolic periodic orbits grows exponentially with respect to the period. We show that for an infinite family of 3-manifolds, infinitely many different contact structures exist that possess a pair of Legendrian knots for which the strip Legendrian contact homology has exponential growth rate.
Funder
Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献