Reeb orbits that force topological entropy

Author:

ALVES MARCELO R. R.,PIRNAPASOV ABRORORCID

Abstract

Abstract We develop a forcing theory of topological entropy for Reeb flows in dimension three. A transverse link L in a closed contact $3$ -manifold $(Y,\xi )$ is said to force topological entropy if $(Y,\xi )$ admits a Reeb flow with vanishing topological entropy, and every Reeb flow on $(Y,\xi )$ realizing L as a set of periodic Reeb orbits has positive topological entropy. Our main results establish topological conditions on a transverse link L, which imply that L forces topological entropy. These conditions are formulated in terms of two Floer theoretical invariants: the cylindrical contact homology on the complement of transverse links introduced by Momin [A. Momin. J. Mod. Dyn.5 (2011), 409–472], and the strip Legendrian contact homology on the complement of transverse links, introduced by Alves [M. R. R. Alves. PhD Thesis, Université Libre de Bruxelles, 2014] and further developed here. We then use these results to show that on every closed contact $3$ -manifold that admits a Reeb flow with vanishing topological entropy, there exist transverse knots that force topological entropy.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference39 articles.

1. [4] Alves, M. R. R. . Growth rate of Legendrian contact homology and dynamics of Reeb flows. PhD Thesis, Université Libre de Bruxelles, 2014.

2. Legendrian contact homology and topological entropy

3. Lower complexity bounds for positive contactomorphisms

4. Positive topological entropy of Reeb flows on spherizations

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Braid stability and the Hofer metric;Annales Henri Lebesgue;2024-09-05

2. Generic properties of $3$-dimensional Reeb flows: Birkhoff sections and entropy;Commentarii Mathematici Helvetici;2024-07-10

3. Homological invariants of codimension 2 contact submanifolds;Geometry & Topology;2024-02-27

4. Hofer's geometry and topological entropy;Compositio Mathematica;2023-05-22

5. $$C^0$$-robustness of topological entropy for geodesic flows;Journal of Fixed Point Theory and Applications;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3