SPECTRAL FLOW, INDEX AND THE SIGNATURE OPERATOR

Author:

AZZALI SARA1,WAHL CHARLOTTE2

Affiliation:

1. Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany

2. Leibniz-Archiv, Waterloostr. 8, 30169 Hannover, Germany

Abstract

We relate the spectral flow to the index for paths of selfadjoint Breuer–Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin–Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The APS-index and the spectral flow;Operators and Matrices;2021

2. The KO-valued spectral flow for skew-adjoint Fredholm operators;Journal of Topology and Analysis;2020-09-03

3. The index of generalised Dirac–Schrödinger operators;Journal of Spectral Theory;2019-09-12

4. Eta and rho invariants on manifolds with edges;Annales de l'Institut Fourier;2019

5. Two-cocycle twists and Atiyah–Patodi–Singer index theory;Mathematical Proceedings of the Cambridge Philosophical Society;2018-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3