The KO-valued spectral flow for skew-adjoint Fredholm operators

Author:

Bourne Chris12,Carey Alan L.34,Lesch Matthias5,Rennie Adam4ORCID

Affiliation:

1. WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

2. RIKEN iTHEMS, Wako, Saitama 351-0198, Japan

3. Mathematical Sciences Institute, Australian National University, Kingsley St., Canberra, ACT 0200, Australia

4. School of Mathematics and Applied Statistics, University of Wollongong, NSW, Australia, 2522 Australia

5. Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Abstract

In this paper, we give a comprehensive treatment of a “Clifford module flow” along paths in the skew-adjoint Fredholm operators on a real Hilbert space that takes values in [Formula: see text] via the Clifford index of Atiyah–Bott–Shapiro. We develop its properties for both bounded and unbounded skew-adjoint operators including an axiomatic characterization. Our constructions and approach are motivated by the principle that [Formula: see text] That is, we show how the KO-valued spectral flow relates to a KO-valued index by proving a Robbin–Salamon type result. The Kasparov product is also used to establish a [Formula: see text] result at the level of bivariant K-theory. We explain how our results incorporate previous applications of [Formula: see text]-valued spectral flow in the study of topological phases of matter.

Funder

JSPS

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological insulators and K-theory;Journal of Mathematical Physics;2024-04-01

2. Index Theory of Chiral Unitaries and Split-Step Quantum Walks;Symmetry, Integrability and Geometry: Methods and Applications;2023-07-28

3. Locally equivalent quasifree states and index theory;Journal of Physics A: Mathematical and Theoretical;2022-03-02

4. Mod-two APS index and domain-wall fermion;Letters in Mathematical Physics;2022-02-28

5. Understanding the index theorems with massive fermions;International Journal of Modern Physics A;2021-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3