DEMOGRAFİK ÖZELLİKLERİN ÇEVRİMİÇİ MARKET ALIŞVERİŞİ KULLANIMINA ETKİSİNİN MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE TAHMİNİ

Author:

BAHÇIVAN Burak1ORCID,YILMAZ Atınç2ORCID

Affiliation:

1. BEYKENT ÜNİVERSİTESİ

2. BEYKENT ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ

Abstract

Çevrimiçi market alışverişi hizmeti sağlayan firmaların ürün satışlarını arttırmak ve yeni müşteriler elde etmek amacıyla hayata geçirdikleri birçok kampanyanın başarıya ulaşamadığı görülmektedir. Çevrimiçi alışverişte ürün satışlarının artmasını ve kampanyaların başarılı olmasını amaçlayarak, çevrimiçi market üzerinden alışveriş yapan 394 kullanıcıya ait çeşitli veriler anket aracılığı ile toplanmıştır. Çalışmada, sık kullanılan makine öğrenmesi algoritmaları ile modelleme yapılarak çevrimiçi market kullanıcılarının kişisel bakım kategorisinden alışveriş yapma eğilimlerinin öngörülmesini sağlayan bir model ortaya konulmuştur. Karar Ağaçları, K-En Yakın Komşu, Gradyan Arttırılmış Ağaçlar, Rastgele Orman ve Lojistik Regresyon yöntemleri modelleme için kullanılmıştır. Son olarak da ortaya çıkan eğri altında kalan alan (EAKA-AUC), geri çağırma (recall), f1-skor (f1-score) değerleri üzerinden yöntemlerin performans karşılaştırılması yapılmıştır. Çalışma sonucunda en yüksek performans 0.928 doğruluk oranı ve 0.92 AUC değerleri ile rastgele orman yöntemi ile elde edilirken; Gradyan Arttırılmış Ağaçlar yöntemi uygulanan model ise 0.704 doğruluk oranı ve 0.70 AUC değeri ile en düşük performansa ulaşmıştır. Çalışmada elde edilen bulgulara göre, özellikleri "43-47 yaş altı, günlük internet kullanımı fazla, kapıda kredi kartı ile ödeme tercihi yapmayan" kullanıcıların kişisel bakım kategorisinden alışveriş yapmayı tercih ettikleri analiz edilmiştir. Elde edilen sonuçlar incelendiğinde, şirketlerin çalışmada ortaya konan model ile hedef müşteri kitlelerini daha iyi belirlemelerine olanak sağlanacağı ve bu sayede yapılan gereksiz yatırımların önüne geçilebileceği öngörülmektedir.

Publisher

Konya Muhendislik Bilimleri Dergisi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3