ATMOSFERİK PARTİKÜL MADDELERİN MAKİNE ÖĞRENMESİ İLE TAHMİNİ: BEŞİKTAŞ, İSTANBUL ÖRNEĞİ
-
Published:2022-12-03
Issue:
Volume:
Page:807-826
-
ISSN:2147-9364
-
Container-title:Konya Journal of Engineering Sciences
-
language:tr
-
Short-container-title:KONJES
Affiliation:
1. KONYA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ
Abstract
Hava kirliliği, insan sağlığına ve çevreye olumsuz etkileri nedeniyle uzun yıllardır tartışılmakta olan bir problemdir. Bu problemi çözmek ve gereken önlemleri almak amacıyla hava kalitesinin değerlendirilmesi önem arz etmektedir. Hava kalitesi değerlendirilirken kirletici konsantrasyonları analiz edilerek, toplum açısından herkesin anlayabileceği bir indeks sistemi kullanılmaktadır. Ulusal Hava Kalitesi İndeksi kapsamında kalite indeksi hesaplanan beş temel kirleticiden biri, ciddi solunum yolu hastalıklarına sebep olan atmosferik partikül maddelerdir. Bu çalışmada çapı 2,5 mikrondan küçük olan ve PM2,5 olarak adlandırılan atmosferik partikül maddelerin oluşumunda trafik yoğunluğu, meteorolojik koşullar ve NOX, SO2, PM10 hava kirleticilerinin etkisi araştırılmıştır. Bu amaçla İstanbul Büyükşehir Belediyesi tarafından farklı alanlarda verilerin paylaşıldığı açık veri portalından yararlanılarak Beşiktaş bölgesindeki hava kalitesi izleme istasyonu incelenmiştir. Atmosferik partikül maddelerin tahmininde Çoklu Doğrusal Regresyon (ÇDR), Rassal Orman (RO), Destek Vektör Makineleri (DVM) ve Yapay Sinir Ağları (YSA) kullanılmıştır. Regresyon denkleminde farklı bağımsız değişkenlerin incelendiği farklı modeller geliştirilmiştir. Geliştirilen modeller ve kullanılan makine öğrenme algoritmaları determinasyon katsayısı (R2), düzeltilmiş R2, ortalama mutlak hata, ortalama hata karesi ve ortalama hata karesi kökü performans ölçütlerine göre karşılaştırılmıştır. Meteorolojik parametreler, trafik yoğunluğu, tarih ve PM10 konsantrasyonunun bağımsız değişken olarak kullanıldığı model, incelenen tüm performans ölçütlerine göre diğer modellere üstünlük sağlamıştır. Algoritmalar karşılaştırıldığında ise performans ölçütlerinin modellere göre değişiklik gösterdiği görülmüş ancak en iyi performans ortalamasına sahip teknik RO, en kötü performans ortalamasına sahip teknik ise ÇDR olarak bulunmuştur.
Publisher
Konya Muhendislik Bilimleri Dergisi
Reference52 articles.
1. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., Arshad, H., 2018, "State-of-the-art in artificial neural network applications: A survey". Heliyon, Cilt 4, Sayı 11, e00938. 2. Avrupa Çevre Ajansı, https://www.eea.europa.eu/data-and-maps/figures/air-quality-standards-under-the-1, ziyaret tarihi: 01.06.2022. 3. Başakın, E. E., Ekmekcioğlu, Ö., Özger, M., 2019, "Makine öğrenmesi yöntemleri ile kuraklık analizi". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 25, Sayı 8, ss. 985-991. 4. Box, G., Jenkins, G., 1970, "Time series analysis: forecasting and control,(revised edition 1976) Holden-Day". San Francisco. 5. Bozdağ, A., Dokuz, Y., Gökçek, Ö. B., 2020, "Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey". Environmental Pollution, Cilt 263, 114635.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|