Dodecarotor İHA'nın Yörünge Takibi için Bozkurt Optimizasyon Algoritması Temelli Optimal PID Denetleyici Tasarımı

Author:

YILDIRIM Şahin1ORCID,ÇABUK Nihat2ORCID,BAKIRCIOĞLU Veli2ORCID

Affiliation:

1. ERCIYES UNIVERSITY, FACULTY OF ENGINEERING

2. AKSARAY UNIVERSITY, AKSARAY TECHNICAL SCIENCES VOCATIONAL SCHOOL

Abstract

In this study, we aimed to find optimal PD controller gains to control orientation and position of a Dodecarotor UAV with minimum trajectory error. In this context, a cascaded PD controller approach which has velocity feedback in the inner loop and position feedback in the outer loop was adopted for each state (roll, pitch, yaw, altitude) in the flight control of the UAV. Subsequently, a fitness function was defined based on the system's time domain response and trajectory tracking error for each state, except the yaw angle, which is non-dominant in terms of trajectory tracking performance. Grey Wolf Optimizer (GWO) was used to obtain PD gains by minimizing the defined fitness function. At the same time, Particle Swarm Optimizer was used in order to benchmark the obtained results from GWO and to avoid a shallow solution space. The obtained PD controller parameters as a result of the optimization study of both algorithms were implemented to the system and the results were compared with each other. Finally, the gains that provided the best results for both algorithms were compared with each other and the results were discussed in terms of the time domain results and the actuator input smoothness. It has been observed that the GWO optimized controller provides a 40-46% improvement over PSO in all four different mass UAVs in terms of reducing axis position errors.

Funder

Erciyes University SRU (BAP) Unit

Publisher

Konya Muhendislik Bilimleri Dergisi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetically Tuned Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor;Academic Platform Journal of Engineering and Smart Systems;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3