Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction

Author:

Chen Gang1ORCID,Huang Lihua2,Xiao Shuaiyong3ORCID,Zhang Chenghong2ORCID,Zhao Huimin4ORCID

Affiliation:

1. School of Management, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China;

2. School of Management, Fudan University, Shanghai 200433, P.R China;

3. School of Economics and Management, Tongji University, Shanghai 200092, P.R. China;

4. Sheldon B. Lubar College of Business, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211

Abstract

Review helpfulness has been measured commonly relying on quantitative indicators at the review level. Helpful reviews qualified by such simple indicators, however, may not necessarily yield accurate sales predictions, owing to the ever-evolving review information quality, customer demand, and product attributes. Positing that reviews with higher customer attention should be more influential to customers’ purchase intention and product sales, we propose to leverage customer attention to better realize the potential of multimodal reviews for sales prediction. We conceptualize customer attention at the holistic review set, review subset, individual review, and review element levels, respectively, and induce four indicators of customer attention, that is, timeliness, semantic diversity, voting-awareness, and varying multimodal interaction. We then propose a novel deep learning method, which incorporates these customer attention indicators using neural network attention mechanisms specifically designed for multimodal-review-based sales prediction. Empirical evaluation based on a large data set in a case study predicting hotel sales (specifically, monthly occupancy rate) shows that, in terms of both prediction performance and representation learning performance, our proposed method outperformed benchmarked state-of-the-art deep learning methods. As multimodal reviews become increasingly prevalent, this method serves as a tool for adequately leveraging such multimodal data to support business decision making.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3