Implications of Data Anonymization on the Statistical Evidence of Disparity

Author:

Xu Heng1ORCID,Zhang Nan1ORCID

Affiliation:

1. Kogod School of Business, American University, Washington, District of Columbia 20016

Abstract

Research and practical development of data-anonymization techniques have proliferated in recent years. Yet, limited attention has been paid to examine the potentially disparate impact of privacy protection on underprivileged subpopulations. This study is one of the first attempts to examine the extent to which data anonymization could mask the gross statistical disparities between subpopulations in the data. We first describe two common mechanisms of data anonymization and two prevalent types of statistical evidence for disparity. Then, we develop conceptual foundation and mathematical formalism demonstrating that the two data-anonymization mechanisms have distinctive impacts on the identifiability of disparity, which also varies based on its statistical operationalization. After validating our findings with empirical evidence, we discuss the business and policy implications, highlighting the need for firms and policy makers to balance between the protection of privacy and the recognition/rectification of disparate impact. This paper was accepted by Chris Forman, information systems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Reference61 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Simulation Data to Understand Bias in Predictive Models of Infectious Disease Spread;ACM Transactions on Spatial Algorithms and Systems;2024-06-30

2. Data-Driven Insights;Advances in Marketing, Customer Relationship Management, and E-Services;2024-05-20

3. Research on Privacy Information Preserving in Social Network based on Big Data;2024 3rd International Conference on Big Data, Information and Computer Network (BDICN);2024-01-12

4. Reducing subgroup differences in personnel selection through the application of machine learning;Personnel Psychology;2023-06-28

5. Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning;Information Systems Research;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3