A Queueing Model and Analysis for Autonomous Vehicles on Highways

Author:

Mirzaeian Neda1ORCID,Cho Soo-Haeng1ORCID,Scheller-Wolf Alan1ORCID

Affiliation:

1. Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract

We investigate the effects of autonomous vehicles (AVs) on highway congestion. AVs have the potential to significantly reduce highway congestion because they can maintain smaller intervehicle gaps and travel together in larger platoons than human-driven vehicles (HVs). Various policies have been proposed to regulate AV travel on highways, yet no in-depth comparison of these policies exists. To address this shortcoming, we develop a queueing model for a multilane highway and analyze two policies: the designated-lane policy (“D policy”), under which one lane is designated to AVs, and the integrated policy (“I policy”), under which AVs travel together with HVs in all lanes. We connect the service rate to intervehicle gaps (governed by a Markovian arrival process) and congestion, and measure the performance using mean travel time and throughput. Our analysis shows that although the I policy performs at least as well as a benchmark case with no AVs, the D policy outperforms the benchmark only when the highway is heavily congested and AVs constitute the majority of vehicles; in such a case, this policy may outperform the I policy only in terms of throughput. These findings caution against recent industry and government proposals that the D policy should be employed at the beginning of the mass appearance of AVs. Finally, we calibrate our model to data and show that for highly congested highways, a moderate number of AVs can make a substantial improvement (e.g., 22% AVs can improve throughput by 30%), and when all vehicles are AVs, throughput can be increased by over 400%. This paper was accepted by Jayashankar Swaminathan, operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3