Human in the Loop Automation: Ride-Hailing with Remote (Tele-)Drivers

Author:

Benjaafar Saif1ORCID,Wang Zicheng2ORCID,Yang Xiaotang3ORCID

Affiliation:

1. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109;

2. School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China;

3. Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Tele-driving refers to a novel concept by which drivers can remotely operate vehicles (without being physically in the vehicle). By putting the human back in the loop, tele-driving has emerged recently as a more viable alternative to fully automated vehicles with ride-hailing (and other on-demand transportation-enabled services) being an important application. Because remote drivers can be operated as a shared resource (any driver can be assigned to any customer regardless of trip origin or destination), it may be possible for such services to deploy fewer drivers than vehicles without significantly reducing service quality. In this paper, we examine the extent to which this is possible. Using a spatial queueing model that captures the dynamics of both pickup and trip times, we show that the impact of reducing the number of drivers depends crucially on system workload relative to the number of vehicles. In particular, when workload is sufficiently high relative to the number of vehicles, we show that, perhaps surprisingly, reducing the number of drivers relative to the number of vehicles can actually improve service level (e.g., as measured by the amount of demand fulfilled in the case of impatient customers). Having fewer drivers than vehicles ensures that there are always idle vehicles; the fewer the drivers, the likelier it is for there to be more idle vehicles. Consequently, the fewer the drivers, the likelier it is for the pickup times to be shorter (making overall shorter service times likelier). The impact of shorter service time is particularly significant when the workload is high, and in this case, it is enough to overcome the loss in driver capacity. When workload is sufficiently low relative to the number of vehicles, we show that it is possible to significantly reduce the number of drivers without significantly reducing service level. In systems in which customers are patient and willing to queue up for the service, we show that reducing the number of drivers can also reduce delay, including stabilizing a system that may otherwise be unstable. In general, relative to a system in which the number of vehicles equals the number of drivers (as in a system with in-vehicle drivers), a system with remote drivers can result in savings in the number of drivers either without significantly degrading performance or actually improving performance. We discuss how these results can, in part, be explained by the interplay of two counteracting forces: (1) having fewer drivers increasing service rate and (2) having fewer drivers reducing the number of servers with the relative strength of these forces depending on system workload. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: This work was supported by the US National Science Foundation [Grant SCC-1831140], and the Guangdong (China) Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence [2023B1212010001]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01687 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3