Dynamic Pricing (and Assortment) Under a Static Calendar

Author:

Ma Will1ORCID,Simchi-Levi David23ORCID,Zhao Jinglong2ORCID

Affiliation:

1. Graduate School of Business, Columbia University, New York, New York 10027;

2. Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

3. Department of Civil and Environmental Engineering, and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

This work is motivated by our collaboration with a large consumer packaged goods (CPG) company. We have found that whereas the company appreciates the advantages of dynamic pricing, they deem it operationally much easier to plan out a static price calendar in advance. We investigate the efficacy of static control policies for revenue management problems whose optimal solution is inherently dynamic. In these problems, a firm has limited inventory to sell over a finite time horizon, over which heterogeneous customers stochastically arrive. We consider both pricing and assortment controls, and derive simple static policies in the form of a price calendar or a planned sequence of assortments, respectively. In the assortment planning problem, we also differentiate between the static vs. dynamic substitution models of customer demand. We show that our policies are within 1-1/e (approximately 0.63) of the optimum under stationary demand, and 1/2 of the optimum under nonstationary demand, with both guarantees approaching 1 if the starting inventories are large. We adapt the technique of prophet inequalities from optimal stopping theory to pricing and assortment problems, and our results are relative to the linear programming relaxation. Under the special case of stationary demand single-item pricing, our results improve the understanding of irregular and discrete demand curves, by showing that a static calendar can be (1-1/e)-approximate if the prices are sorted high-to-low. Finally, we demonstrate on both data from the CPG company and synthetic data from the literature that our simple price and assortment calendars are effective. This paper was accepted by Hamid Nazerzadeh, big data analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3