Affiliation:
1. Technology and Operations Management, INSEAD, 77305 Fontainebleau, France;
2. Rotman School of Management, University of Toronto, Toronto, Ontario M5S 1A1, Canada
Abstract
Motivated by online advertising, we model and analyze a revenue management problem where a platform interacts with a set of customers over a number of periods. Unlike traditional network revenue management, which treats the interaction between platform and customers as one-shot, we consider stateful customers who can dynamically change their goodwill toward the platform depending on the quality of their past interactions. Customer goodwill further determines the amount of budget that they allocate to the platform in the future. These dynamics create a trade-off between the platform myopically maximizing short-term revenues, versus maximizing the long-term goodwill of its customers to collect higher future revenues. We identify a set of natural conditions under which myopic policies that ignore the budget dynamics are either optimal or admit parametric guarantees; such simple policies are particularly desirable since they do not require the platform to learn the parameters of each customer dynamic and only rely on data that is readily available to the platform. We also show that, if these conditions do not hold, myopic and finite look-ahead policies can perform arbitrarily poorly in this repeated setting. From an optimization perspective, this is one of a few instances where myopic policies are optimal or have parametric performance guarantees for a dynamic program with nonconvex dynamics. We extend our model to the cases where supply varies over time and where customers may not interact with the platform in every period. This paper was accepted by Chung Piaw Teo, optimization.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Strategy and Management
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献