Affiliation:
1. Yale School of Management, New Haven, Connecticut 06511;
2. The University of Chicago Booth School of Business, Chicago, Illinois 60637;
3. UCLA Anderson School of Management, Los Angeles, California 90095
Abstract
We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. As one example, early in the COVID-19 pandemic, the Federal Emergency Management Agency faced overwhelming, temporally scattered, a priori uncertain, and correlated demands for medical supplies from different states. In such contexts, social planners aim to maximize the minimum fill rate across sequentially arriving agents, where each agent’s fill rate (i.e., its fraction of satisfied demand) is determined by an irrevocable, one-time allocation. For an arbitrarily correlated sequence of demands, we establish upper bounds on the expected minimum fill rate (ex post fairness) and the minimum expected fill rate (ex ante fairness) achievable by any policy. Our upper bounds are parameterized by the number of agents and the expected demand-to-supply ratio, yet we design a simple adaptive policy called projected proportional allocation (PPA) that simultaneously achieves matching lower bounds for both objectives (ex post and ex ante fairness) for any set of parameters. Our PPA policy is transparent and easy to implement, as it does not rely on distributional information beyond the first conditional moments. Despite its simplicity, we demonstrate that the PPA policy provides significant improvement over the canonical class of nonadaptive target-fill-rate policies. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a standard compartmental modeling approach that is commonly used to forecast pandemic trajectories. In such a setting, our PPA policy significantly outperforms its theoretical guarantee and the optimal target-fill-rate policy. This paper was accepted by Omar Besbes, revenue management and market analytics. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4700 .
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Strategy and Management
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献