Learning Product Rankings Robust to Fake Users

Author:

Golrezaei Negin1ORCID,Manshadi Vahideh2ORCID,Schneider Jon3,Sekar Shreyas45ORCID

Affiliation:

1. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;

2. Yale School of Management, Yale University, New Haven, Connecticut 06511;

3. Google Research, New York, New York 10011;

4. University of Toronto Scarborough, Scarborough, Ontario M1C 1A4, Canada;

5. Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada

Abstract

Analytics in the Face of Fraudulent Data This article presents a novel online learning algorithm for identifying optimal product rankings in the presence of fake users and corrupted data. In recent years, e-commerce platforms, such as Amazon, have witnessed a growing number of fake users and click farms. These fraudulent actors seek to boost the position of certain products in the display ordering (i.e., product ranking). Further, platforms’ reliance on data analytics exacerbates the effect of these fake users as machine learning algorithms leverage user feedback to determine product rankings. In the face of these challenges, the present article departs from the status quo that is based on detecting fake users and instead proposes a robust learning methodology. More specifically, the article presents a robust online learning algorithm that converges to the optimal product ranking even when it is impossible to distinguish between real and fake users in the data.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3