Affiliation:
1. Graduate School of Business, Columbia University, New York, New York 10027;
2. Institute of Engineering Sciences, O’Higgins University, 611 Rancagua, Chile
Abstract
Dynamic resource allocation problems arise under a variety of settings. In “Survey of Dynamic Resource-Constrained Reward Collection Problems: Unified Model and Analysis,” Balseiro, Besbes, and Pizarro introduce a unifying model for a large class of dynamic optimization problems dubbed dynamic resource-constrained reward collection (DRC2) problems. Surveying the literature, they show that this class encompasses a variety of disparate and classical problems typically studied separately, such as dynamic pricing with capacity constraints, dynamic bidding with budgets, network revenue management, online matching, or order fulfillment. Furthermore, they establish that the DRC2 class is amenable to analysis by characterizing the performance of a central, certainty-equivalent heuristic. Notably, they provide a novel unifying analysis that isolates the drivers of performance, recovers as corollaries some existing specialized results, generalizes other existing results by weakening the assumptions required, and yields new results in specialized settings for which no such characterization was available.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献