Debiasing In-Sample Policy Performance for Small-Data, Large-Scale Optimization

Author:

Gupta Vishal1ORCID,Huang Michael1ORCID,Rusmevichientong Paat1ORCID

Affiliation:

1. Data Science and Operations, Marshall School of Business, University of Southern California, Los Angles, California 90089

Abstract

In many modern large-scale decision-making problems, data can be scarce. As a result, traditional methods such as cross-validation perform poorly in evaluating the performance of decision-making policies. In “Debiasing In-Sample Policy Performance for Small-Data, Large-Scale Optimization,” Gupta, Huang, and Rusmevichientong propose a novel estimator of the out-of-sample performance for a policy in data-driven optimization. Unlike cross-validation, their approach avoids sacrificing training data for evaluation. As a result, they theoretically show the estimator is asymptotically unbiased as the problem size grows. Furthermore, they show that the estimator is asymptotically optimal when applied to more specialized “weakly coupled” optimization problems. Finally, using a case study on dispatching emergency medical response services, they demonstrate their proposed method provides more accurate estimates of out-of-sample performance and selects better policies.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Drone Delivery with Weather Information;Manufacturing & Service Operations Management;2024-07

2. Supply Chain Contracts in the Small Data Regime;Manufacturing & Service Operations Management;2024-07

3. Feature-based Scheduling and Dynamic Learning with a Large Backlog;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3