Robust Drone Delivery with Weather Information

Author:

Cheng Chun1ORCID,Adulyasak Yossiri2ORCID,Rousseau Louis-Martin3

Affiliation:

1. School of Economics and Management, Dalian University of Technology, Dalian 116024, China;

2. GERAD and Department of Logistics and Operations Management, HEC Montréal, Montréal, Quebec H3T 2A7, Canada;

3. Polytechnique Montréal and CIRRELT, Montréal, Quebec H3C 3A7, Canada

Abstract

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3