Demand Estimation Under Uncertain Consideration Sets

Author:

Jagabathula Srikanth1ORCID,Mitrofanov Dmitry2ORCID,Vulcano Gustavo34ORCID

Affiliation:

1. Leonard N. Stern School of Business, New York University, New York, New York 10012;

2. Carroll School of Management, Boston College, Chesnut Hill, Massachusetts 02467;

3. School of Business, Universidad Torcuato Di Tella, Buenos Aires 1428, Argentina;

4. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina

Abstract

In “Demand Estimation Under Uncertain Consideration Sets,” Jagabathula, Mitrofanov, and Vulcano investigate statistical properties of the consider-then-choose (CTC) models, which gained recent attention in the operations literature as an alternative to the classical random utility (RUM) models. The general class of CTC models is defined by a general joint distribution over ranking lists and consideration sets. Starting from the important result that the CTC and RUM classes are equivalent in terms of explanatory power, the authors characterize conditions under which CTC models become identified. Then, they propose expectation-maximization (EM) methods to solve the related estimation problem for different subclasses of CTC models, building from the provably convergent outer-approximation algorithm. Finally, subclasses of CTC models are tested on a synthetic data set and on two real data sets: one from a grocery chain and one from a peer-to-peer (P2P) car sharing platform. The results are consistent in assessing that CTC models tend to dominate RUM models with respect to prediction accuracy when the training data are noisy (i.e., transaction records do not necessarily reflect the physical inventory records) and when there is significant asymmetry between the training data set and the testing data set. These conditions are naturally verified in P2P sharing platforms and in retailers working on long-term forecasts (e.g., semester long) or geographical aggregate forecasts (e.g., forecasts at the distribution center level).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3