Mean Service Metrics: Biased Quality Judgment and the Customer–Server Quality Gap

Author:

Batt Robert J.1ORCID,Tong Jordan D.2ORCID

Affiliation:

1. Wisconsin School of Business, University of Wisconsin–Madison, Madison, Wisconsin 53706

2. Wisconsin School of Business, University of Wisconsin-Madison, Madison, Wisconsin 53706

Abstract

Problem definition: People often make service-quality judgments based on information about the quality of each server even though they care primarily about the quality each customer experiences. When and how do server-level quality metrics differ from customer-experienced ones? Can people properly account for these differences, or do they drive human judgment and decision biases? Academic/practical relevance: Biased judgments about service quality can cause governments to fund programs suboptimally, organizations to promote the wrong employees, and customers to make disappointing purchases. We further our understanding of the role that cognitive biases play in services and how to manage quality information in light of them. Methodology: We use a mathematical model to define the gap between server-level and customer-experienced quality metrics. We use secondary data in the context of the higher-education industry to quantify the customer–server quality gap in practice. We construct a behavioral model to derive hypotheses about how environmental factors impact the direction and magnitude of judgment biases. Controlled laboratory experiments test the hypothesized biases and mitigation techniques. Results: Our empirical study reveals that the two measures differ enough to drive significant differences in the rank order of school majors, teachers, and airports. Our experiments support our main conjecture that judgments and decisions about customer-experienced metrics are biased toward server-level metrics. Consequently, (1) judgments about customer-experienced quality are biased high/low when quality and server load are negatively/positively correlated, (2) judgments about a server’s absolute impact on customer experience are biased high/low when a server has a smaller/larger load than average, and (3) providing customer-experienced quality metrics mitigate these biases. Managerial implications: Our results help identify when and why service-quality metrics are likely to mislead judgments and bias decisions as well as who is likely to benefit from such biases. The results also guide system designers on how to report metrics when seeking to help support effective decision making.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3