Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination

Author:

Shi Zhongshun1,Peng Yijie2ORCID,Shi Leyuan3,Chen Chun-Hung4,Fu Michael C.5

Affiliation:

1. Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, Tennessee 37996;

2. Department of Management Science and Information Systems, Guanghua School of Management, Peking University, Beijing100871, China;

3. Department of Industrial and Systems Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53705;

4. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, Virginia 22030;

5. The Robert H. Smith School of Business, Institute for Systems Research, University of Maryland, College Park, Maryland 20742

Abstract

Monte Carlo simulation is a commonly used tool for evaluating the performance of complex stochastic systems. In practice, simulation can be expensive, especially when comparing a large number of alternatives, thus motivating the need to intelligently allocate simulation replications. Given a finite set of alternatives whose means are estimated via simulation, we consider the problem of determining the subset of alternatives that have means smaller than a fixed threshold. A dynamic sampling procedure that possesses not only asymptotic optimality, but also desirable finite-sample properties is proposed. Theoretical results show that there is a significant difference between finite-sample optimality and asymptotic optimality. Numerical experiments substantiate the effectiveness of the new method. Summary of Contribution: Simulation is an important tool to estimate the performance of complex stochastic systems. We consider a feasibility determination problem of identifying all those among a finite set of alternatives with mean smaller than a given threshold, in which the means are unknown but can be estimated by sampling replications via stochastic simulation. This problem appears widely in many applications, including call center design and hospital resource allocation. Our work considers how to intelligently allocate simulation replications to different alternatives for efficiently finding the feasible alternatives. Previous work focuses on the asymptotic properties of the sampling allocation procedures, whereas our contribution lies in developing a finite-budget allocation rule that possesses both asymptotic optimality and desirable finite-budget properties.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3