A Decomposition Approach for Sequencing Mixed-Model Two-Sided Assembly Line with Stochastic Processing Time

Author:

Wu Jiaxi1ORCID,Shang Jing1ORCID,Wang Jibin1ORCID,Li Zhen1ORCID,Wu Zhihui1ORCID,Xiao Limin2ORCID

Affiliation:

1. China Mobile Information Technology Center, Beijing, P. R. China

2. State Key Laboratory of Complex & Critical, Software Environment (CCSE), School of Computer, Science and Engineering, Beihang University, Beijing, P. R. China

Abstract

This study tackles the challenge of optimizing mixed-model two-sided assembly lines, where task processing times are uncertain. The objective is to reduce the expected cycle time the average time to complete one product across the assembly line. Given the complexity of assessing objectives amidst stochastic conditions, we formulate the problem as a simulation optimization problem. We introduce a strategic decomposition method that breaks down the core problem into two discrete sub-tasks: allocating tasks to respective work-stations, and determining the sequence of tasks at each station. The decomposition framework systematically partitions the solution space, though it does not ensure a global optimum, it can efficiently guide the search towards a high-quality near-optimal solution with a practical time frame. Based on this framework, we develop a novel simulation-optimization algorithm, termed the Decomposition Approach with Harmony Search (DAHS), which incorporates a harmony search heuristic to effectively navigate the partitioned solution space. Additionally, we implement two innovative strategies to improve the search and simulation procedures. Numerical experiments reveal that our DAHS algorithm outperforms benchmark algorithms in terms of solution quality and computational efficiency.

Funder

National key R&D Program of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3