Conflict-Driven Heuristics for Mixed Integer Programming

Author:

Witzig Jakob1ORCID,Gleixner Ambros1ORCID

Affiliation:

1. Zuse Institute Berlin, 14195 Berlin, Germany

Abstract

Two essential ingredients of modern mixed-integer programming solvers are diving heuristics, which simulate a partial depth-first search in a branch-and-bound tree, and conflict analysis, which learns valid constraints from infeasible subproblems. So far, these techniques have mostly been studied independently: primal heuristics for finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. In this paper, we pose the question of whether and how the orthogonal goals of proving infeasibility and generating improving solutions can be pursued in a combined manner such that a state-of-the-art solver can benefit. To do so, we integrate both concepts in two different ways. First, we develop a diving heuristic that simultaneously targets the generation of valid conflict constraints from the Farkas dual and the generation of improving solutions. We show that, in the primal, this is equivalent to the optimistic strategy of diving toward the best bound with respect to the objective function. Second, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classic coefficient diving. In a detailed computational study, both methods are evaluated on the basis of an implementation in the source-open-solver SCIP. The experimental results underline the potential of combining both diving heuristics and conflict analysis. Summary of Contribution. This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed-integer linear programs. It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be combined successfully with diving heuristics that aim at finding primal solutions. For two newly designed diving heuristics, this paper features a thoroughly computational study regarding their impact on the overall performance of a state-of-the-art MIP solver.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility Jump: an LP-free Lagrangian MIP heuristic;Mathematical Programming Computation;2023-03-14

2. Implications, conflicts, and reductions for Steiner trees;Mathematical Programming;2021-12-30

3. Conflict Analysis for MINLP;INFORMS Journal on Computing;2021-03-30

4. Computational aspects of infeasibility analysis in mixed integer programming;Mathematical Programming Computation;2021-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3