Implications, conflicts, and reductions for Steiner trees

Author:

Rehfeldt DanielORCID,Koch Thorsten

Abstract

AbstractThe Steiner tree problem in graphs (SPG) is one of the most studied problems in combinatorial optimization. In the past 10 years, there have been significant advances concerning approximation and complexity of the SPG. However, the state of the art in (practical) exact solution of the SPG has remained largely unchallenged for almost 20 years. While the DIMACS Challenge 2014 and the PACE Challenge 2018 brought renewed interest into Steiner tree problems, even the best new SPG solvers cannot match the state of the art on the vast majority of benchmark instances. The following article seeks to advance exact SPG solution once again. The article is based on a combination of three concepts: Implications, conflicts, and reductions. As a result, various new SPG techniques are conceived. Notably, several of the resulting techniques are (provably) stronger than well-known methods from the literature that are used in exact SPG algorithms. Finally, by integrating the new methods into a branch-and-cut framework, we obtain an exact SPG solver that is not only competitive with, but even outperforms the current state of the art on an extensive collection of benchmark sets. Furthermore, we can solve several instances for the first time to optimality.

Funder

Bundesministerium für Forschung und Technologie

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient solver for large-scale onshore wind farm siting including cable routing;European Journal of Operational Research;2024-09

2. Ultrafast hybrid fermion-to-qubit mapping;Physical Review B;2024-03-22

3. Mixed Integer Programming based Placement Refinement by RSMT Model with Movable Pins;ACM Transactions on Design Automation of Electronic Systems;2024-02-15

4. Enabling Research through the SCIP Optimization Suite 8.0;ACM Transactions on Mathematical Software;2023-06-15

5. Near-optimal Steiner tree computation powered by node embeddings;Knowledge and Information Systems;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3