Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow

Author:

Porras Álvaro1ORCID,Domínguez Concepción1ORCID,Morales Juan Miguel1ORCID,Pineda Salvador1ORCID

Affiliation:

1. OASYS Research Group, University of Málaga, 29071 Málaga, Spain

Abstract

In this paper, we tackle the resolution of chance-constrained problems reformulated via sample average approximation. The resulting data-driven deterministic reformulation takes the form of a large-scale mixed-integer program (MIP) cursed with Big-Ms. We introduce an exact resolution method for the MIP that combines the addition of a set of valid inequalities to tighten the linear relaxation bound with coefficient strengthening and constraint screening algorithms to improve its Big-Ms and considerably reduce its size. The proposed valid inequalities are based on the notion of k-envelopes and can be computed off-line using polynomial-time algorithms and added to the MIP program all at once. Furthermore, they are equally useful to boost the strengthening of the Big-Ms and the screening rate of superfluous constraints. We apply our procedures to a probabilistically constrained version of the DC optimal power flow problem with uncertain demand. The chance constraint requires that the probability of violating any of the power system’s constraints be lower than some positive threshold. In a series of numerical experiments that involve five power systems of different size, we show the efficiency of the proposed methodology and compare it with some of the best performing convex inner approximations currently available in the literature. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported in part by the European Research Council under the EU Horizon 2020 research and innovation program [Grant 755705], in part by the Spanish Ministry of Science and Innovation [Grant AEI/10.13039/501100011033] through project PID2020-115460GB-I00, and in part by the Junta de Andalucía and the European Regional Development Fund through the research project P20_00153. Á. Porras is also financially supported by the Spanish Ministry of Science, Innovation and Universities through the University Teacher Training Program with fellowship number FPU19/03053. Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.0302 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3