Comparisons of Two-Stage Models for Flood Mitigation of Electrical Substations

Author:

Austgen Brent1ORCID,Kutanoglu Erhan1ORCID,Hasenbein John J.1ORCID,Santoso Surya2ORCID

Affiliation:

1. Operations Research and Industrial Engineering Program, The University of Texas at Austin, Austin, Texas 78712;

2. Chandra Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712

Abstract

We compare stochastic programming and robust optimization decision models for informing the deployment of ad hoc flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. In our models, the first stage captures the deployment of a fixed quantity of flood mitigation resources, and the second stage captures the operation of a potentially degraded power grid with the primary goal of minimizing load shed. To model grid operation, we introduce adaptations of the direct current (DC) and linear programming alternating current (LPAC) power flow approximation models that feature relatively complete recourse by way of an indicator variable. We apply our models to a pair of geographically realistic flooding case studies, one based on Hurricane Harvey and the other on Tropical Storm Imelda. We investigate the effect of the mitigation budget, the choice of power flow model, and the uncertainty perspective on the optimal mitigation strategy. Our results indicate the mitigation budget and uncertainty perspective are impactful, whereas choosing between the DC and LPAC power flow models is of little to no consequence. To validate our models, we assess the performance of the mitigation solutions they prescribe in an alternating current (AC) power flow model. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the Energy Institute, The University of Texas at Austin. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0125 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0125 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3