Abstract
To formulate a real-world optimization problem, it is sometimes necessary to adopt a set of non-linear terms in the mathematical formulation to capture specific operational characteristics of that decision problem. However, the use of non-linear terms generally increases computational complexity of the optimization model and the computational time required to solve it. This motivates the scientific community to develop efficient transformation and linearization approaches for the optimization models that have non-linear terms. Such transformations and linearizations are expected to decrease the computational complexity of the original non-linear optimization models and, ultimately, facilitate decision making. This study provides a detailed state-of-the-art review focusing on the existing transformation and linearization techniques that have been used for solving optimization models with non-linear terms within the objective functions and/or constraint sets. The existing transformation approaches are analyzed for a wide range of scenarios (multiplication of binary variables, multiplication of binary and continuous variables, multiplication of continuous variables, maximum/minimum operators, absolute value function, floor and ceiling functions, square root function, and multiple breakpoint function). Furthermore, a detailed review of piecewise approximating functions and log-linearization via Taylor series approximation is presented. Along with a review of the existing methods, this study proposes a new technique for linearizing the square root terms by means of transformation. The outcomes of this research are anticipated to reveal some important insights to researchers and practitioners, who are closely working with non-linear optimization models, and assist with effective decision making.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献