Min-Sup-Min Robust Combinatorial Optimization with Few Recourse Solutions

Author:

Arslan Ayşe N.1,Poss Michael2ORCID,Silva Marco3

Affiliation:

1. Université Rennes, Institut National des Sciences Appliquées de Rennes, Centre National de la Recherche Scientifique, Institut de Recherche Mathématique de Rennes, Unité Mixte de Recherche 6625, F-35000 Rennes, France;

2. Laboratory of Computer Science, Robotics and Microelectronics of Montpellier (LIRMM), UMR CNRS 5506, University of Montpellier, 34095 Montpellier, France;

3. Centro de Engenharia e Gestão Industrial (CEGI), Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC), Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal

Abstract

In this paper, we consider a variant of adaptive robust combinatorial optimization problems where the decision maker can prepare K solutions and choose the best among them upon knowledge of the true data realizations. We suppose that the uncertainty may affect the objective and the constraints through functions that are not necessarily linear. We propose a new exact algorithm for solving these problems when the feasible set of the nominal optimization problem does not contain too many good solutions. Our algorithm enumerates these good solutions, generates dynamically a set of scenarios from the uncertainty set, and assigns the solutions to the generated scenarios using a vertex p-center formulation, solved by a binary search algorithm. Our numerical results on adaptive shortest path and knapsack with conflicts problems show that our algorithm compares favorably with the methods proposed in the literature. We additionally propose a heuristic extension of our method to handle problems where it is prohibitive to enumerate all good solutions. This heuristic is shown to provide good solutions within a reasonable solution time limit on the adaptive knapsack with conflicts problem. Finally, we illustrate how our approach handles nonlinear functions on an all-or-nothing subset problem taken from the literature. Summary of Contribution: Our paper describes a new exact algorithm for solving adaptive robust combinatorial optimization problems when the feasible set of the nominal optimization problems does not contain too many good solutions. Its development relies on a progressive relaxation of the problem augmented with a row-and-column generation technique. Its efficient execution requires a reformulation of this progressive relaxation, coupled with dominance rules and a binary search algorithm. The proposed algorithm is amenable to exploiting the special structures of the problems considered as illustrated with various applications throughout the paper. A practical view is provided by the proposition of a heuristic variant. Our computational experiments show that our proposed exact solution method outperforms the existing methodologies and therefore pushes the computational envelope for the class of problems considered.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3