Affiliation:
1. School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona 85281;
2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Abstract
Bilevel optimization formulates hierarchical decision-making processes that arise in many real-world applications, such as pricing, network design, and infrastructure defense planning. In this paper, we consider a class of bilevel optimization problems in which the upper level problem features some integer variables and the lower level problem enjoys strong duality. We propose a dedicated Benders decomposition method for solving this class of bilevel problems, which decomposes the Benders subproblem into two more tractable, sequentially solvable problems that can be interpreted as the upper and lower level problems. We show that the Benders subproblem decomposition carries over to an interesting extension of bilevel problems, which connects the upper level solution with the lower level dual solution, and discuss some special cases of bilevel problems that allow sequence-independent subproblem decomposition. Several novel schemes for generating numerically stable cuts, finding a good incumbent solution, and accelerating the search tree are discussed. A computational study demonstrates the computational benefits of the proposed method over a state-of-the-art, bilevel-tailored, branch-and-cut method; a commercial solver; and the standard Benders method on standard test cases and the motivating applications in sequential energy markets.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献