Benders Subproblem Decomposition for Bilevel Problems with Convex Follower

Author:

Byeon Geunyeong1ORCID,Van Hentenryck Pascal2ORCID

Affiliation:

1. School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona 85281;

2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Bilevel optimization formulates hierarchical decision-making processes that arise in many real-world applications, such as pricing, network design, and infrastructure defense planning. In this paper, we consider a class of bilevel optimization problems in which the upper level problem features some integer variables and the lower level problem enjoys strong duality. We propose a dedicated Benders decomposition method for solving this class of bilevel problems, which decomposes the Benders subproblem into two more tractable, sequentially solvable problems that can be interpreted as the upper and lower level problems. We show that the Benders subproblem decomposition carries over to an interesting extension of bilevel problems, which connects the upper level solution with the lower level dual solution, and discuss some special cases of bilevel problems that allow sequence-independent subproblem decomposition. Several novel schemes for generating numerically stable cuts, finding a good incumbent solution, and accelerating the search tree are discussed. A computational study demonstrates the computational benefits of the proposed method over a state-of-the-art, bilevel-tailored, branch-and-cut method; a commercial solver; and the standard Benders method on standard test cases and the motivating applications in sequential energy markets.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3