Solving Bilevel Programs Based on Lower-Level Mond-Weir Duality

Author:

Li Yu-Wei1ORCID,Lin Gui-Hua1ORCID,Zhu Xide1ORCID

Affiliation:

1. School of Management, Shanghai University, Shanghai 200444, China

Abstract

This paper focuses on developing effective algorithms for solving a bilevel program. The most popular approach is to replace the lower-level problem with its Karush-Kuhn-Tucker conditions to generate a mathematical program with complementarity constraints (MPCC). However, MPCC does not satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ) at any feasible point. In this paper, inspired by a recent work using the lower-level Wolfe duality (WDP), we apply the lower-level Mond-Weir duality to present a new reformulation, called MDP, for bilevel program. It is shown that, under mild assumptions, they are equivalent in globally or locally optimal sense. An example is given to show that, different from MPCC, MDP may satisfy the MFCQ at its feasible points. Relations among MDP, WDP, and MPCC are investigated. On this basis, we extend the MDP reformulation to present another new reformulation (called eMDP), which has similar properties to MDP. Furthermore, to compare two new reformulations with the MPCC and WDP approaches, we design a procedure to generate 150 tested problems randomly and comprehensive numerical experiments show that MDP has quite evident advantages over MPCC and WDP in terms of feasibility to the original bilevel programs, success efficiency, and average CPU time, whereas eMDP is far superior to all other three reformulations. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the National Natural Science Foundation of China [Grants 12071280 and 11901380]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0108 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0108 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3