Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests

Author:

Aprahamian Hrayer1ORCID,El-Amine Hadi2ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843;

2. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, Virginia 22030

Abstract

We study the design of large-scale group testing schemes under a heterogeneous population (i.e., subjects with potentially different risk) and with the availability of multiple tests. The objective is to classify the population as positive or negative for a given binary characteristic (e.g., the presence of an infectious disease) as efficiently and accurately as possible. Our approach examines components often neglected in the literature, such as the dependence of testing cost on the group size and the possibility of no testing, which are especially relevant within a heterogeneous setting. By developing key structural properties of the resulting optimization problem, we are able to reduce it to a network flow problem under a specific, yet not too restrictive, objective function. We then provide results that facilitate the construction of the resulting graph and finally provide a polynomial time algorithm. Our case study, on the screening of HIV in the United States, demonstrates the substantial benefits of the proposed approach over conventional screening methods. Summary of Contribution: This paper studies the problem of testing heterogeneous populations in groups in order to reduce costs and hence allow for the use of more efficient tests for high-risk groups. The resulting problem is a difficult combinatorial optimization problem that is NP-complete under a general objective. Using structural properties specific to our objective function, we show that the problem can be cast as a network flow problem and provide a polynomial time algorithm.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3